ICS CCS CCT

才

体

T/CCT XX—20XX

MTO 产品气组成的测定 气相色谱法

Determination of the composition of MTO gas product —

Gas chromatographic method

(征求意见稿)

20XX—X—XX 发布

20XX—XX—X 实施

目 次

前	· 늘 日	.II
	范围	
	规范性引用文件	
	术语和定义	
	方法提要	
	试剂与材料	
6	仪器设备	2
	取样	
8	测定步骤	5
9	结果的表示	6
10)精密度	6
11	报告	6
附	·录 A	8

前 言

本文件依据 GB/T 1.1—2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本文件由中国煤炭加工利用协会提出并归口。

本文件主要起草单位:国能包头煤化工有限责任公司、国能榆林化工有限公司、国能新疆化工有限公司、中国矿业大学(北京)、XXX

本文件主要起草人:

本文件为首次发布。

MT0 产品气组成的测定 气相色谱法

1 范围

本文件规定了 MTO 产品气组成的气相色谱测定方法的方法原理、试剂材料、仪器设备、测定步骤、结果表示、精密度及测试报告等内容。

本文件适用于主要成分为甲烷、乙烯、乙烷、丙烯、丙烷、二甲醚、甲醇、C4、C5及 C5+、氢气、氮气、一氧化碳、二氧化碳的 MTO 产品气的测定。各组分最低测定含量为 0.01%(体积分数),如使用推荐条件 2,二甲醚、甲醇组分最低测定含量为 0.0001%(体积分数)。

2 规范性引用文件

下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 3723 工业用化学品采样安全通则

GB/T 6681 气体化工产品采样通则

GB/T 8170 数值修约规则与极限数值的表示和判定

3 术语和定义

下列术语和定义适用于本文件。

3. 1

MTO 产品气 composition of MTO gas product

MTO 工艺装置中, MTO 反应器顶部出口气体经过急冷、水冷处理后的气态产物。

4 方法提要

将适量试样注入气相色谱仪,试样中的各组分在色谱柱中被分离。氢气、氮气、一氧化碳及二氧化碳组分用热导池检测器(TCD)检测,用外标法定量分析;二甲醚、甲醇组分用氢火焰离子化检测器(FID)进行检测,用外标法或校准面积归一化法定量分析;甲烷、乙烯、乙烷、丙烯、丙烷、C4、C5及C5+组分用氢火焰离子化检测器(FID)进行检测,用校准面积归一化法定量分析。

5 试剂与材料

5.1 载气

氮气: 纯度(体积分数)不低于99.99%, 经硅胶及5A分子筛干燥。

氦气: 纯度(体积分数)不低于99.999%, 经硅胶及5A分子筛干燥。

5.2 燃气

氢气:纯度(体积分数)不低于99.99%,经硅胶及5A分子筛干燥。

T/CCT XXX—20XX

5.3 助燃气

空气: 经硅胶及 5A 分子筛干燥。

5.4 标气

有证标准物质: C1~C5 烃、二甲醚、甲醇、氢气、氮气、一氧化碳、二氧化碳的混合气。各组分具有已知浓度。

标准气的所有组分应处于均匀的气态,与样品相比,对于体积分数不大于 5%的组分,标准气中相应组分的体积分数不大于 10%,也不低于样品中相应组分体积分数的一半;对于体积分数大于 5%的组分,标准气中相应组分的体积分数应不低于样品中组分体积分数的一半,也不大于该组分体积分数的两倍。

标准气应在有效期内使用。

6 仪器设备

6.1 气相色谱仪

配备火焰离子化检测器(FID)、热导检测器(TCD),通过定量环进样,由一台或多台气相色谱仪组成。本文件推荐两种可供选择的操作条件,其中条件 1 色谱流路示意图见图 1;如需进一步分离碳四组分和有机含氧化合物,可采用条件 2,其色谱流路示意图见图 2。满足本文件分离和定量效果的其他色谱配置也可使用。

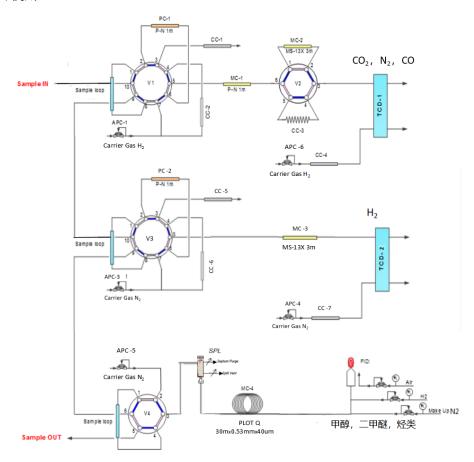


图 1 条件 1 的色谱流路示意图

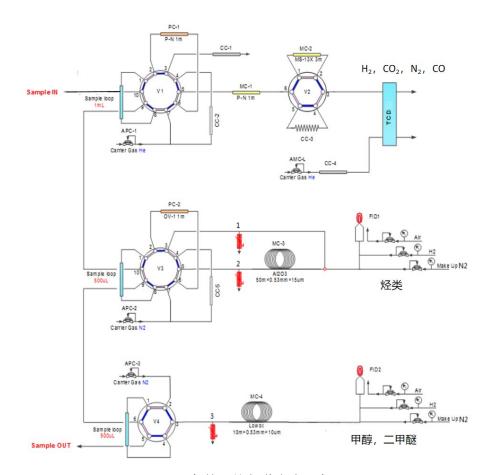


图 2 条件 2 的色谱流路示意图

6.2 色谱柱

本文件推荐两种条件下的色谱柱及典型操作条件,见表 1 和表 2。能达到同等分离效果的其他色谱柱和色谱条件亦可使用。

色谱柱	P-N		MS-13X		PLOTQ	
固定相	高分子多孔小球		分子筛		键合聚苯乙烯-二乙 烯基苯	
膜厚/um	_				40	
柱长/m	1		3		30	
柱内径/mm	2.1		2.1		0.53	
最高使用温度/℃	190		350		290	
进样口温度/℃	150					
FID	温度 250℃	氢气流量 40 mL/min		空气流量 400 mL/min	尾吹流量 30 mL/min	
TCD1	温度 15	50°C		电流 60 mA	极性+	
TCD2	温度 15	150°C		电流 60 mA	极性-	
柱温	柱温/℃			50		

表 1 条件 1 使用色谱柱及典型操作条件

T/CCT XXX—20XX

	初温保持时间/min	7
	一段升温速率/(℃/min)	2
	一段终温/℃	60
	一段终温保持时间/min	1
	二段升温速率/(°C/min)	15
	二段终温/℃	190
	二段终温保持时间/min	20
	FID	氮气
载气	TCD1	氢气
	TCD2	氮气

表 2 条件 2 使用色谱柱及典型操作条件

色谱柱	P-N	MS-13X	HP-AL/S	LOWOX PLOT	OV-1	
固定相	高分子多孔 小球	分子筛	硫酸钠脱活 的氧化铝	_	100%聚二甲 基聚硅氧烷	
膜厚/um			15	10	_	
柱长/m	1	3	50	10	1	
柱内径/mm	2.1	2.1	0.53	0.53	2.1	
最高使用温度/℃	190	350	200	350	350	
进样口温度/℃		200				
FID1	温度 200℃	氢气流量 40 mL/min	空气流量 400 mL/min	尾吹流量 10 mL/min		
FID2	温度 200℃	氢气流量 40 mL/min	空气流量 400 mL/min 尾吹流量 10 mL/min		10 mL/min	
TCD	温度 200℃	电流 10	00 mA	极'	极性+	
	柱温/℃		60			
	保持时	门间/min	2			
柱温	一段升温速率/(℃/min)		10			
	一段终温/℃		160			
	保持时间/min		10			
	FID1		氮气			
载气	FID2		氮气			
	TCD		氦气			

6.3 记录装置

能满足测定要求的积分仪或色谱工作站。

7 取样

按 GB/T 6681 中所规定的技术要求采集样品,采样安全应符合 GB/T 3723 的规定。采样容器为钢瓶、铝箔袋、球胆等。

8 测定步骤

8.1 设定操作条件

调节仪器至表1或表2所示的操作条件或同等分离效果的其他适宜条件,待仪器稳定后即可开始测定。

8.2 测定

8.2.1 校正

将标气(5.4)用减压阀与气相色谱仪进样口连接并进样,重复测定两次,进行校正。待各组分流 出后,记录各通道各组分的峰面积,两次重复测定的峰面积之差应不大于其平均值的5%,取其平均值 供定量计算。

氢气、氮气、一氧化碳及二氧化碳组分采用外标法进行方法校正,甲烷、乙烯、乙烷、丙烯、丙烷、C4、C5及 C5+组分采样校准面积归一化法进行方法校正,甲醇、二甲醚组分按表 1条件时采样校准面积归一化法进行方法校正,按表 2条件时采用外标法进行方法校正。

8.2.2 试样测定

将盛装有样品的采样器具与气相色谱仪进样口连接并进样,测量各组分的峰面积。

8.2.3 试验数据处理

8.2.3.1 外标法——氢气、氮气、一氧化碳及二氧化碳、甲醇、二甲醚

当组分试样中氢气、氮气、一氧化碳及二氧化碳、甲醇、二甲醚组分按外标法定量时,其体积百分数 ϕ_{si} 按式(1)计算:

$$\phi_{si} = \frac{\phi_s \times A_i}{A_s} \dots \tag{1}$$

式中:

 ϕ_{c} ——标样中组分 i 的体积分数, %;

 A_{c} ——标样中组分 i 的峰面积;

 A_i ——试样中组分 i 的峰面积。

8. 2. 3. 2 校正面积归一化法——甲烷、乙烯、乙烷、丙烯、丙烷、C4、C5 及 C5+、甲醇、二甲醚

当组分按校正面积归一化法计算其体积分数时,实际报出结果需将 8.2.3.1 外标法定量的组分总含量进行归百差减处理。按式(2)计算各组分的体积分数。

T/CCT XXX—20XX

$$\phi_i = \frac{A_i \times f_i}{\sum (A_i \times f_i)} \times (100.00 - \phi) \dots (2)$$

式中:

 ϕ_i ——试样中组分 i 的体积分数, %;

 A_i ——试样中组分 i 的峰面积;

 f_i ——组分 i 的校正因子;

 ϕ ——外标法计算出的组分的总体积分数,%。

8.2.3.3 校正因子的计算

$$f_i = \frac{m_s}{A_s} \tag{3}$$

:中:

 f_i ——组分 i 的校正因子;

 A_{c} ——标气中组分 i 的峰面积;

 m_s ——标气中组分 i 的浓度。

9 结果的表示

对任意试样,以两次重复测定结果的算术平均值表示其分析结果,并按照 GB/T 8170 的修约规则,组分的体积分数修约至 0.01%,若按条件 2 的分析操作,二甲醚、甲醇的体积分数可修约至 0.0001%。

10 精密度

在重复性或再现性条件下,获得的两次独立测试结果的绝对差值在 95%置信概率下应不大于表 3 的规定。

含量(体积分数)/%	重复性限/%	再现性限/%
≤0.01	0.001	_
0.01~1	0.02	0.05
1~10	0.04	0.20
>10	0.15	0.35

表 3 甲醇制烯烃反应产品气组分测定的精密度

11 测试报告

测试报告应包括下列内容:

- a) 有关样品的全部资料,例如样品名称、采样地点、采样日期、采样时间等。
- b) 本标准编号。
- c)测定结果。
- d)测定中观察到的任何异常现象的细节及其说明。
- e)分析人员的姓名及分析日期等。

附录 A (资料性附录) 推荐操作条件下的标气色谱图

推荐条件 1 的各通道标气色谱图如图 A.1、图 A.2、图 A.3 所示,推荐条件 2 的各通道标气色谱图 如图 A.4、图 A.5、图 A.6 所示。

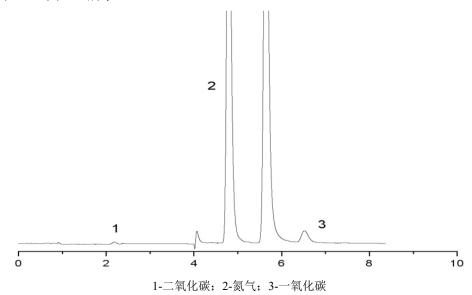


图 A. 1 条件 1 TCD1 通道典型的色谱图

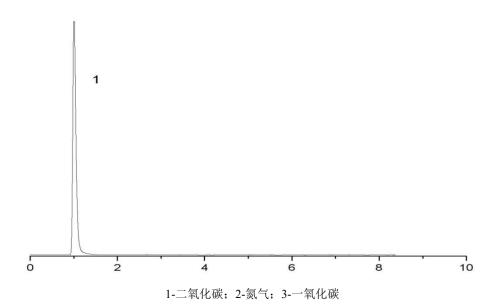
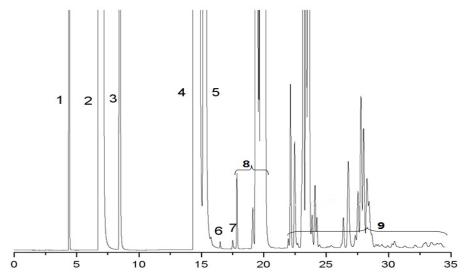
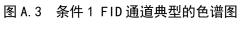
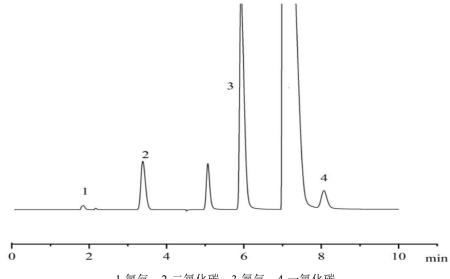
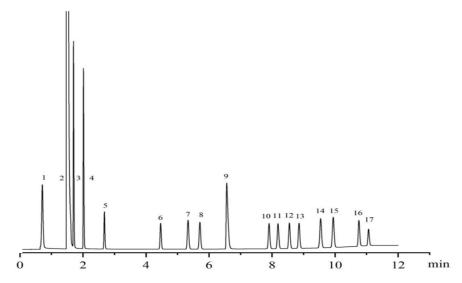





图 A. 2 条件 1 TCD2 通道典型的色谱图



1-甲烷; 2-乙烯; 3-乙烷; 4-丙烯; 5-丙烷; 6-二甲醚; 7-甲醇; 8-C4; 9-C5及C5+

1-氢气; 2-二氧化碳; 3-氮气; 4-一氧化碳 图 A. 4 条件 2 TCD 通道典型的色谱图

1-甲烷; 2-乙烯; 3-乙烷; 4-丙烯; 5-丙烷; 6-二甲醚; 7-甲醇; 8-C4; 9-C5 及 C5+ 图 A. 5 条件 2 FID1 通道典型的色谱图

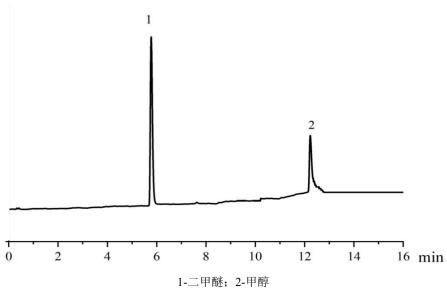


图 A. 6 条件 2 FID2 通道典型的色谱图

10